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The distribution of diffuse X-ray scattering in two planes in reciprocal space for the substitutional
solid solution copper—16 at. % aluminum was measured. The symmetry of the distribution showed
that there is not only short-range order but as well small static atomic displacements from the
expected sites. The short-range order intensity was separated from that associated with the static
displacements and the two were treated separately.

It was found that the order parameters were satisfactorily reproduced by the following model:
The Al atoms are distributed on the atomic sites in sets of four so that they occupy the corners
of a distorted tetrahedron. The tetrahedra are distributed at random except that no two may be so
close that they form an Al-Al nearest neighbor pair. All other sites are occupied by Cu atoms.

Measurements after neutron irradiation showed that such exposure caused a small but significant

827

increase in the state of order.

Introduction

The face-centered cubic substitutional solid solution,
copper-16 at.% aluminum, became of interest because
of the radiation damage experiments of Wechsler &
Kernohan (1958, 1962) and Kernohan & Wechsler
(1961). These experiments showed that the electrical
resistivity of this alloy decreases as a function of time
in the reactor, passes through a minimum, and then
increases continuously. Since pure metals do not
exhibit such a decrease, it was suggested that the
resistivity change may be associated with a radiation-
induced change in the short-range order present in
the alloy. To determine whether or not this is the
case, diffuse X-ray scattering measurements were made
on single crystals of the alloy before and after exposure
to reactor irradiation. Reported here are the results
of those measurements and their interpretation.

As will be seen, an interesting and different distribu-
tion of diffuse intensity was found, reflecting not only
short-range order but as well displacements of atoms
from the sites of the average lattice. The combined
interpretation of the short-range order diffuse scat-
tering and the modulations resulting from the atomic
displacement yields an unexpected short-range struc-
ture for copper—-aluminum solid solutions.

Measurements of short-range order before and after
irradiation for this alloy have been reported by
Houska & Averbach (1959). However, their use of a
powder sample results in an averaging of the intensity
over a sphere about the origin in reciprocal space.
This consequent loss of detail in the intensity distribu-
tion causes a precise interpretation of the observed
order parameters to be very difficult.

* QOperated for the U.S. Atomic Energy Commission by
Union Carbide Corporation.
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Experimental

A single crystal of intended composition copper—16
at.% aluminum was grown in a graphite mold and
homogenized at 750 °C for 2 hr followed by slow cooling
to room temperature at a rate of about 20 °C per hr.
Slabs 5/8 in. in diameter of appropriate orientation
were cut from the ingot and polished mechanically
and electrolytically to remove the distorted surface
layer and to produce a bright, clean surface. The
samples were then annealed at 150 °C for 54 hr in
order to increase the amount of order.

The lattice constant of our alloy was observed to
be 3-6545 A. This value corresponds closely to the
intended composition of Cu-16 at.% Al, according to
the measurements of Bradley & Goldschmit (1939),
Obinata & Wasserman (1933), Stirling & Raynor (1955),
and Wechsler & Kernohan (1958), all of which agree
well with each other.

The diffractometer used for the diffuse scattering
measurements was a General Electric XRD 5 equipped
with a goniostat. The diffractometer was modified to
step scan automatically and print for preset time. A
lithium fluoride monochromator, doubly bent as sug-
gested by Warren (1954), and Cu K« radiation were
used. The detector was a sodium iodide scintillation
counter with pulse height discrimination. A balanced
pair of nickel-cobalt filters were used to eliminate the
half-wavelength component from the monochromator
and the copper fluorescence this component excites in
the sample. The specimen was supported in a liquid
nitrogen cryostat, so that measurements could be
made either at room temperature or at —195 °C. The
volume surrounding the sample was evacuated, to
provide thermal insulation for the low-temperature
measurements and to eliminate air scattering. All
measurements were converted to absolute units by
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Fig. 1. The diffuse intensity distribution at —195 °C for the unirradiated sample. Compton scattering has been removed, but
no temperature diffuse scattering correction has been made. The quantity plotted is 10001 (in electron units)/Nf2cy. Closely
spaced contours greater than 200 near the Bragg maxima have been omitted. The inset illustrates schematically the two
planes in reciprocal space in which the measurements were made.

comparing the intensity with that observed at high
scattering angles from an amorphous material, poly-
styrene.

Measurements at two temperatures were made in
order to eliminate contributions to the diffuse scat-
tering due to thermal motion. Since the temperature
diffuse scattering is nearly proportional to the absolute
temperature, a linear extrapolation to absolute zero
was used.

The diffuse intensity was determined in two planes
of reciprocal space: the ki, kg, 0 plane and the ha, ks,
(hy+he)plane. (i, ke, and A3 are continuous variables
defining a point in reciprocal space.) The latter plane
has hexagonal symmetry, with a [111] direction for
its normal. Fig. 1 shows the diffuse intensity distribu-
tion in these two planes measured at —195 °C.

After completion of the diffuse intensity measure-
ments, the samples were exposed for 157 hr at 100 °C
in hole D at the center of the ORNL Graphite Reactor.

The integrated thermal neutron flux for this exposure
is approximately 5-2 x 1017 neutrons cm-2. A resistivity
sample of similar composition to the X-ray samples
was irradiated in the same capsule. The exposure
caused the resistivity to decrease from 8-472 to 8-335
pohm.cm. This decrease corresponds closely to the
minimum in the resistivity versus time of irradiation
for an irradiation temperature of 100 °C (Kernohan
& Wechsler, 1961). Following the irradition, the diffuse
scattering measurements were repeated. Figs. 2 and 3
compare the intensity distribution before and after
irradiation for the two planes in reciprocal space.

It is clear from the figures that the effect of neutron
irradiation is a slight sharpening of the pattern, cor-
responding to small increases in the magnitudes of the
order parameters, but the general features of the
intensity distribution are the same. This is substan-
tially in agreement with the previously reported result
of Houska & Averbach (1959).
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Unirradiated

Fig. 2. A comparison of the diffuse intensity distribution in
the (%,4,0) plane for the irradiated and unirradiated samples.
The intensity is shown in the square O<Ah,, hy<1. The
quantity plotted is the same as in Fig. 1, except that the
temperature diffuse scattering has been removed.

Irradiated

Fig. 3. A comparison of the diffuse intensity distribution in.
the (hy, hy, ky +ky) plane for the irradiated and unirradiated
samples. The intensity is shown in the triangle 0 <k, +h,<1.
The quantity plotted is the same as in Fig. 2.

Determination of the short-range
structure parameters

The interpretation of the intensity patterns of Figs. 2
and 3 is most usefully done in terms of the size effect
theory of Warren, Averbach & Roberts (1951). Ac-
cording to their result, for a face-centered cubic
substance the diffuse intensity in electron units per
atom (I/N), divided by mams(fa—f8)2, may be written
as the sum of two series:
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I(hihshs)| Nmams(fa—f5)?
= 3 &mp €08 27t(hil+ hom + han)
Imn

— 227 (h1l + hom + han) sin 277(hyl + hom + han).
imn

The sums are taken over all values of the integers
I, m, and n. The two kinds of atom have scattering
factors f4 and fs, and their atomic concentrations in
the alloy are m4 and mp. The continuous variables
h1, k2, and hs define a point in reciprocal space, and
at the Bragg maxima they take on values equal to
half of the Miller indices. The integers Imn define a
particular lattice site

Timn = l(21/2) + m(az/2) +n(as/2)

where ajasa;z are the cubic unit-cell vectors. For a face-
centered cubic structure {4+m+n must be even. The
short-range order parameter o, and the size effect
parameter finm. are as defined by Warren et al. (1951).
All ximn except ogoo vanish if the atoms are randomly
distributed on the sites, and all Sim, vanish if all of
the atoms lie precisely on the sites of the average
lattice.

Since our measurements were all of intensity
distributions in planes of reciprocal space, it is useful
to rewrite the intensity in its two-dimensional form:

I'(hhe) = X Apqcos2n(bip+haq) — X (haBhy+heBS,)
e

g
x sin 27t(hap + hag) . (1)
In the A1420 plane
, _ Nmamg(fa—f5)?
D= a0y 40

= Z“pqn, and qu = 2ﬂp2ﬂpqn ;
n n
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Fig. 4. The intensity distribution of Fig. 2 after removal
of the atomic displacement modulations.
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Table 1. Observed and computed values of Apq

(hq, by, 0) plane

Observed

pq Irrad. Unirrad. Cale.

00 +1-886 +1-732 +1-500
10 —0-669 ~0:610 —0-564
11 —0-024 —0-063 —0-072
20 +0-252 +0-254 +0-231
21 +0-099 +0-086 +0-100
22 —0-124 —0-080 —0-172
30 —0-195 —0-168 —0:156
31 —0-026 —0-032 —0-077
32 +0-050 +0-024 4 0-044
40 +0-060 +0:072 +0-074
41 +0-089 +0-050 +0-028
33 —0-009 +0-004 +0-030
42 —0-074 —0:040 +0-004
43 +0-038 +0-026 —0:002
50 —0-064 —0-052 0:000
51 —0-023 —0-024 —0-001
52 +0-026 +0-018 4 0-008
44 —0-077 —0-045 +0-016
53 —0-008 —0-007 +0-011
60 +0-076 +0-044 +0-005
61 —0-018 —0-006 +0-004
62 +0-020 +0-001 +0-001
54 +0-041 +0:022 +0-004
63 —0-027 —0-002 0-000
70 —0-027 —0-011 0-000
55 —0-017 —0-010 +0-002
71 —0-018 —0-003 0-000

and in the A, he, b1+ he plane
_ I(’ll, hz, hl-l—@
Nmamp(fa—fs)2 """

By = 2np 2 Bo-n, g-n,n -

’

= lep—n, q-n,n, and
n

A method is available (Borie, 1961) to separate the
two series of equation (1). Figs. 4 and 5 show the
intensity distributions after removal of the atomic
size effect modulations. Fourier inversion of these

Fig. 5. The intensity distribution of Fig. 3 after removal
of the atomic displacement modulations.

(hy> by, by +hy) plane

Observed

pq Irrad. Unirrad. Cale.

00 +1-209 +1-354 +0-848
10 —0-161 —0-139 —0-129
21 —0-225 —0-205 —0-184
20 +0-171 +0-177 +0-205
31 —0-012 —0-015 —0-036
30 +0-064 +0:053 +0-055
42 +0-036 +0-034 +0-020
41 —0-061 —0-063 —0-076
40 +0-013 +0-008 —0:034
52 +0-030 +0-020 +0-022
51 —0-012 —~0-012 —0-006
50 +0-044 +0-034 +0-033
63 —0-019 —0-017 +0-002
62 +0-006 +0-003 + 0-005
61 —-0-012 —0-012 +0-010
60 +0-001 —0-003 —0-001
73 +0-003 0-000 +0-002
72 +0-010 +0-012 +0-004
71 —0-009 —0-007 +0-001
84 —0-006 —0-001 +0-008
70 +0-013 +0-011 +0-001
83 —0-007 —0-005 +0-009
82 —0-002 —0-002 +0-005
81 —0:004 —0-004 +0-002
94 +0-007 +0-003 +0-002
93 —0-001 —0-001 +0-002
80 + 0-004 0-000 0-000

plots, done with the aid of an IBM 7090, yielded the
parameters Apq, which are given in Table 1. Table 2
gives Bp, for the unirradiated sample in the A1h20
plane.

Table 2. Observed values of Bb, for the unirradiated
sample in the (h1h0) plane

p=1 2 3 4 5
g=0 —0019 —0104 40006 +0-028 —0-005
1 —0-031 +0-147 —0023 —0-022 —0-004
2 +0-:002 —0-101 40004 +0-03¢ —0-021
3 +0-016 +0-058 40002 —0-021 +0-017
4 —0019 —0-026 —0-009 +0-015 —0-012

Interpretation of the parameters 4,4

We defer to a later section a discussion of the effect
of radiation, and consider first the rather more
interesting problem of interpreting the diffuse scat-
tering in terms of the short-range structure of the
alloy.

The parameters Ap, define the diffuse scattering
which would have been observed if none of the atoms
were displaced from the sites of the average lattice.
The diffuse peaks shown in Figs. 4 and 5 do not occur
at the normal superstructure positions, but rather,
they form a ‘four-leaf clover’ arrangement of satellites
about each superstructure position, in a fashion similar
to that found by Guinier & Griffoul (1948) for CusAu
quenched from high temperature and then heat treated
for a short time below the critical temperature. They
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interpreted their pattern in terms of highly ordered
antiphase domains, the domains being bounded by
faults on the (100) planes in such a way that gold
atoms have only copper nearest neighbors. As the
domain size increases, the satellites become closer to
the normal superstructure positions, finally merging
with each other at these points as the domains become
large.

In our case, the satellites are quite a bit further
from the superstructure positions than those found
by Guinier & Griffoul. In fact, the intensity seems to
cluster about points half-way between them and to
be relatively weak at points such as h1£20=7340. This
would imply an extremely small domain size.

The above considerations make it tempting to
assume that the atomic configuration at a domain
boundary is the most common atomic arrangement in
our alloy. Fig. 6 illustrates how the crossing of such a
boundary (the zy plane) gives rise to distorted tetra-
hedral arrays.

Fig. 6. Two face-centered cubic unit cells shown schematically
to illustrate the atomic sites of the distorted tetrahedron
discussed in the text.

In principle, one should be able to obtain a set of
oximn from a least-squares fit to the experimentally
determined A, in two planes in reciprocal space. In
practice it was found that the «im» were overdetermin-
ed and a variety of results could be obtained depending
on how the various equations in oum. are weighted
relative to each other. However, all sets of xinn sO
determined which are reasonably plausible include
a value of a110 of about —0-2, the largest possible
negative value this parameter may take on. This
means that there are no Al-Al nearest neighbors in
the alloy. This is consistent with the tetrehedral ar-
rangement of Fig. 6 if the corner atoms are taken to
be Al and if all of the nearest neighbors of the four
corner positions are taken to be Cu.

There is a further factor which tends to make the
existence of such tetrahedra plausible. The measure-
ments of Bradley & Goldschmit (1939), Obinata &
Wasserman (1933), and Stirling & Raynor (1955) all
show the atomic volume to increase much more slowly
with increasing Al content than one would compute
from the lattice constants of pure Cu and pure Al
If one extrapolates to 25 at.%, Al, one obtains just the
average atomic volume found by Tarora (1949) for
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f1 CusAl. This phase is metastable and results upon
quenching the f phase (b.c.c., disordered) to room
temperature. Furthermore, the f; phase has the
BiF3(DOs) structure, in which regular tetrahedra are
delineated by the Al atoms occupying four of the eight
corners of a body-centered cell. In this structure there
are no Al-Al nearest neighbors. The dotted cell of
Fig. 6 shows such a tetrahedron, distorted to fit a
face-centered cubic lattice.

In the light of the above, it was decided to attempt
to compute oumn from the following model: The alloy
is composed of Al tetrahedra as shown in Fig. 6. They
are distributed more or less at random on the sites of
a lattice otherwise populated by copper atoms, with the
restriction that no two tetrahedra may be so near each
other that they cause Al-Al nearest neighbors. There
are six possible orientations of tetrahedra, all assumed
to be equally probable. One orientation is shown in
Fig. 6; a second orientation may be obtained by a 90°
rotation about the z axis. In Fig. 6 the extended axis
is along the z axis; the four other orientations are
obtained by allowing the extended axis of the tetra-
hedron to be parallel to the other two cube axes.

To compute the diffuse intensity for this model it
is convenient to rearrange the intensity expression.
The short range order parameter «; associated with
the lattice vector r, may be written o, =1— (ps/mp).
The quantity p%, is the probability of finding a B
atom at site ¢ after first having found an 4 atom at the
origin. With p%,=1—9%,, since mp=1—m4, we may
write o«;=1—(1—p4% ) /mp=p"/mg—m /mg. With
fa—fe=Af we may write Isro, the intensity associated
with short range order, in electron units (Cowley, 1950)

Ispo/Af? = Nmamp 3 x:exp (1K.1y)
t
=3 Nm,p'y, exp (ik.1;) — 3 Nm?% exp (tk.ry).
t t

The quantity Nm,p%, in the first sum J is simply
the total number of 4 — 4 pairs in the crystal separated
by r:. In the second J g, Nm? is the number of pairs that
would have been obtained if the atoms were distributed
at random. Hence the problem of computing Isro
from a model rests in a calculation of J. If ¢ is an
amplitude such that J=gg@*, then ¢ =3 exp (ik.ry).
A

The summation for ¢ is taken only over those sites
occupied by 4 atoms.

We wish to write ¢ in terms of the tetrahedra, and
to do that it is convenient to assign to each
tetrahedron a structure factor. With the origin chosen
to be the center of the tetrahedron, for the orientation
shown in Fig. 6 we may write

F = exp [2ni(h1— h3)]+exp [27i( — b1 — h3)]
+ exp[2ni(he + k)] +exp [2mi( — b2+ ha)] .
Similar structure factors may be written for the other

five orientations. Then ¢ = 3 F; exp (¢k.r;). The sum-
mation is now carried out only over those sites which
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are centers of tetrahedra. This is one-fourth of the
total number of Al sites. If site £ is the center of a
tetrahedron, F; may be any one of six possible
structure factors. We may then write

J =33 F,F¥exp [ik.(r,—r1;)].
t

Let pimn be the probability of finding a tetrahedron at
Timn after first having found one at the origin. Then

J = (Nmaf4) X pimn(FF*Yimn exp [27i(hal + ham + han)].
Imn

To compute (FF*)u.,, we assume that if several

relative orientations of the two tetrahedra are possible,

they are all equally probable. For Jg, pimn =ma/4
and (FF*ymn=_F)2 So

I.S'RO/Af2 = (NmA/‘l)lZ {plmn(FF*>lmn
— (maf4){F)?} exp [27i(hil+ hom + hsn)] .

It is straightforward but tedious to compute from
the above expression the probability of finding Al-Al
pairs in the various coordination shells and hence the
Ximn, ONCE Pimn is given. Reasonable values for pima
were assumed in the following way: For 7im. greater
than some rrmw, pzmn=mA/4, <FF*>lmn=<F>2, and
there is no contribution to Isro associated with that
coordination shell. To conserve the composition of the
alloy, the average value of pim. within the sphere of
radius rLyny must be maf4. Given a tetrahedron at
the origin (pooo=1), Pims for the first several coordina-
tion shells must be zero in order to avoid creating
Al-Al nearest neighbors. Specifically, pim.=0 for
Imn =110, 200, and 211. The first possible tetrahedron
sites are in the 220 shell, and only a few of the six
possible orientations are allowed. The largest rin, for
which fewer than all six tetrahedral orientations are
possible is lmrn=2330. Hence, there should be short-
range order among the tetrahedra at least out to that
shell. We assumed that L2+ M2+ N2=20, which
should correspond to the minimum amount of order
possible, given that all the Al atoms are arranged in

Table 3. Calculated three-dimensional short-range
order parameters from the tetrahedron model

Imn

Ximn imn Ximn
000 +1:000 431 0-000
110 —0-190 521 +0-002
200 +0-213 440 +0-008
211 +0-045 530 +0-007
220 —0-004 433 —0-001
310 —0-083 442 +0-004
222 —0-076 600 +0-003
321 + 0-003 611 +0-002
400 + 0-034 532 +0-002
411 +0-012 620 +0-001
330 —0-002 541 +0-002
420 +0-012 622 0-000
332 +0-017 631 0-000
422 —0-008 444 0-000
510 —0-009 550 +0-002

OF COPPER-16 AT.% ALUMINUM

tetrahedra. For 6 <124m24-n2 < 20, pimn must be
greater than m4/4 in order to compensate for the
forbidden sites near the origin. Presumably it must
begin at lmn =220 with a moderately large value and
decrease slowly to ma/4 at Imn=420. In the range
6 < [24+m24n2 < 20, the probability was taken to be
Pimn=ma/4+ K)/(20— 12— m2—n?),the constant K being
chosen to conserve the composition of the alloy within
the sphere of radius rs. Table 3 gives the short-
range order parameters computed with this model.

Table 1 compares the observed values of 4p, with
those computed from tha above model. A more
complicated model, allowing certain relative orienta-
tions of the tetrahedra to be preferred, could probably
improve the agreement. However, it was felt that the
agreement obtained was sufficiently good not to make
this elaboration worthwhile.

Interpretation of the parameters B},

It is evident from the figures that the modulations of
the diffuse intensity associated with the series in B},
(equation 1) are both large and unusual. A comparison
of Figs. 2 and 3 with 4 and 5 shows that a considerable
difference in the intensity distribution results when
they are removed. In other systems in which the
effect has been observed (Roberts, 1954; Batterman,
1957; Borie, 1957), it is found that the short-range
order diffuse intensity is distorted most by their
presence along lines in reciprocal space through the
fundamental reflections such as 7,00 or %;10. In this
alloy, however, as may be seen from Fig. 1, the effect
of the modulations is most apparent along lines such
as h30 or £,30; that is to say, along lines through the
usual superstructure positions for a face-centered
cubic alloy.

In general one would expect that all fim» would
have a common sign — a consequence of the fact that
the distance between pairs of ‘larger’ atoms for all
combination shells is greater than the distance
computed from the average undistorted lattice. Table
2 shows that for this alloy both positive and negative
values of B1m» occur. This means that for some coordina-
tion shells the distance between say Al-Al pairs is
greater than that associated with the average lattice,
and for some others is is less.

It is also frequently supposed that the largest Bimn
is associated with the first coordination shell, and that
Bumn becomes smaller as 124 m2-+4+n2 becomes larger.
Table 2 shows that for this alloy this is not so. The
largest value of B}, occurs for pg=21, which is
independent of both the first and second coordination
shells. The next largest value (for pg=20) is of opposite
sign and independent also of the nearest neighbors. In
fact, those Bf, which are influenced by the nearest
neighbors (pg=10 and 11) are quite small compared
with at least three other B,

The data of Table 2 show another interesting
anomaly which may not be explained in terms of the
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simple size effect theory as developed by Warren,
Averbach & Roberts (1951). For the Imn coordina-
tion shell, let R{4 be the average vector separation
between pairs of A atoms, and let Iy, be the vector
separation that would have been found if there were
no static displacements from the sites of the average
lattice. Then

AA
len - rlmn'l' 8lmn .

In the Warren—-Averbach—Roberts theory it was as-
sumed that this relation could be written

len = rlmn(l "I'el‘:n‘i) (2)

where el,,m is a small scalar. That is, it was assumed
that 872 is always parallel to rima. A consequence of
this assumption is that the theory can be developed
in terms of a set of parameters fimsn which are deter-
mined by e, e£2, and Ximn. Bima is independent of
the order of 7, m, and » and is thus a constant for any
coordination shell. In the #%h20 vplane, since
Bl = 27p 3 Bpgn, it follows that (1/p)Bj, = (1/q) B},

Table 2 shows quite clearly that the data do not have
this property. For example 1B% = 3(+0:147)=0-073,
while Bl, = +0-002, a difference which is quite outside
the accuracy of the measurements. A similar compari-
son may be made between B} and Bl;, and between
B3, and BZ,. Hence, for this alloy, the assumption that
Sl = 1,644 does not hold, and the diffraction
theory must be modified. That this might be so in
some cases has been suggested by Guinier (1954).

The Warren—-Averbach—Roberts treatment may be
easily modified to obtain a more general expression
valid for this alloy. With

Slmn Li,TlIgL ar+ M imn %32 —+ Nlmn %33
and

BB
8lm'rl, lmn%al + M Ilmn %az + ‘zvlmn%a3

one finds that I4p, the contribution to the diffuse
intensity associated with the atomic displacements,
may be written in electron units

Lap/Nmamp(fa—[B)?
= —27[/ fA —‘fB hl {len(“lmn'l' ’I’I’LA/WLB )fA

- len (‘xlmn + mB/mA))fB}
+ ho { M5 (% pmn + (MajmB)) fa
- Mgnez(“lmn"’ (ms/ma) )fB}
+hs {Nlmn(‘x mat (mA/mB))fA
- Nlmn((xlmn'i' mB/mA )fB}]
x sin 27 (bl +ham + han) . (3)

Except that the assumption of equation (2) has not
been made, the derivation is exactly parallel to that of
Warren, Averbach & Roberts. If we let

2ﬂ/fA —fB {len(‘xlmn'l' mA/mB )fA
len((xlmn mB/mA))fB} (4)

'ylmn
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with similar expressions for y7, and y},.,, equation (3)
becomes

Lap/Nmamp(fa—[5)% = — X (haVimn +hoyion+ haYiin)
Ilmn
% sin 27(hil + hom + hgn) . (5)

We may imagine the y’s to be components of an atomic
displacement vector Iy, = (Vimns Vitms Vimn) Of arbi-
trary magnitude and direction. With the assumption
of equation (2), it becomes [imn=27Bmx(l, m, n), and
equation (5) reduces to the Warren—Averbach-Roberts
result. For highly symmetrical values of Imn such as
110 or 200, this is an adequate representation of ['ima.
But for say lmn=211, there is no physical necessity
that y3;;=2y51.

In the h1h20 plane, then, with I4p given by (5), we
may write

By = Z7m - (6)

We will not attempt the very difficult task of
finding a model which will reproduce all B%,. Rather,
we will compute only the first several using the basic
qetrahedron arrangement applied to the short-range or-
der coefficients. We will show that if one displaces the
four aluminum atoms which make up the tetrahedron
from their sites in such a way that the tetrahedron
becomes more regular, one obtains reasonably good
agreement with the experimentally observed values.

Consider the dashed body-centered cell of Fig. 6,
with aluminum atoms at four of its eight corners
forming a tetrahedron. Let the aluminum atoms be
moved from their sites so that the dotted cell is cubic
and the tetrahedron is undistorted. If this is done so
that the atomic volume within the dotted cell is the
same as that of the undistorted f.c.c. cell, then the
dotted cell edge a is related to the f.c.c. lattice constant
ap by 3a3 = }al, or @ = 0-8a¢. With aluminum atoms
labeled 4, we have that

B4ia=12(0-8 o) —ao=013 a0 or 84 = (+0-264a0,0,0).

Similarly
8011 = ( 0 40 ‘lar()y +0 13 2@0; +0'13 %ao) .

We have ignored all contributions to 874 except those
associated with a single tetrahedron.

There are no AA nearest neighbor pairs so that 544
is meaningless. However, for the copper atom oc-
cupying the body-centered position of the dotted cell,
548 =0, since the atomic volume of the tetrahedron is
unchanged by the atomic displacements.

If we ignore the contribution of BB pairs to equation
(4) on the grounds that they should not be significantly
affected by a distortion conserving atomic volume, and
if we take f4 and fz to be proportional to the atomic
numbers of aluminum and copper, we have

'y%mn = - 27‘('}%) ((xl"m'*' (mA/mB))Lig,f}, .
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Since only one of the six 200 neighbors can be a part
of the tetrahedron (see Fig. 6) we take

o200 = 1 —(%/0-84) = +0-01,
and
yioo = —27(22) (0-01 +0-19) (+0-26) = —0-27 .

Similarly
7%11 = +O'20 and y;ll = —0-07.

The above calculation was made assuming that the
atomic displacements were such that the tetrahedron
is regular. If the displacements are only one-third
that great, and if we use equation (6) to compute B,
we find that Bl,=0-000, B};= —0-047, B},= —0-047,
B2,=—0-090, and B2 = +0-133. These values agree
quite well with those given in Table 2, except for B,
which is in any case small and could easily be influenced
by the higher order y},, contributions which have been
omitted. The two largest values of B}, of Table 2 have
been reasonably well reproduced by the calculation.
This interpretation of the atomic displacement effect
in this alloy is admittedly crude, and necessarily
dependent on assumptions which, though plausible,
are hardly certain. It does, however, seem to confirm
that the tetrahedra are more nearly regular than one
would compute from the average lattice constant.

Discussion

It has been shown from an interpretation of diffuse
scattering measurements that the short-range structure
of the alloy copper-16 at.% aluminum consists of a
more or less random arrangement of tetrahedra of
aluminum atoms. The four corners of the tetrahedron
are occupied by aluminum atoms, and its center is a
copper site. All of the nearest neighbors of the four
corner sites are copper so that there are no Al-Al pairs
in the first coordination shell. Of the six tetrahedron
edges, two are second-nearest neighbor distances and
four are third-nearest neighbor distances, so that the
tetrahedron is not regular. However, the atomic
displacement modulations of the diffuse scattering
show that the aluminum atoms are displaced from the
sites of the average lattice in such a way that the
tetrahedra become more nearly regular.

It is clear that the unusual atomic displacement
modulations encountered in these measurements are
not simply the consequence of atomic size as originally
proposed by Warren, Averbach & Roberts (1951) and
Guinjer (1954), and as found in copper-gold alloys by
Roberts (1954), Batterman (1957), and Borie (1957).
They are rather the result of an effort to maintain
the bond angles and distances of a regular tetrahedron,
and they therefore show that the atomic bonds in this
alloy have considerable non-metallic character. It is
proposed that the atomic size effect originally treated
by Warren, Averbach & Roberts be more generally
called the atomic displacement effect.

Values of the experimentally determined BJ, in the

THE SHORT-RANGE STRUCTURE OF COPPER-16 AT.% ALUMINUM

(Rahoho) plane are given for the unirradiated sample
only because their interpretation is at the moment
rather primitive, and because they are less accurately
known than the A4,,. Essentially, their determination
depends on a small difference between two numbers,
while Ap, depends on the average (Borie, 1961). For
the unirradiated sample, slightly larger B}, were
observed. The writers are convinced, however, that
in principle much important information about the
structure of disordered solid solutions is inherent in
these parameters, and that much remains to be done
both in terms of their measurement and their inter-
pretation.

This experiment confirms the result of Houska &
Averbach (1959) that the state of order has increased
after irradiation, presumably because of radiation
enhanced diffusion. However, Table 1 shows that the
increases in the order parameters are small compared
with those reported by Houska & Averbach, and in
some cases Apq is either unchanged or slightly de-
creased. In general the calculated A,, seem to agree
better with those measured with an unirradiated
sample, though the difference is usually small. An
analysis of the meaning of the changes in A4p; upon
irradiation was not attempted. Note that radiation
caused Ago to increase in the (k1520) plane while it
decreased in the (hi,he,h1+he) plane. However, the
sum of Ago in the two planes is unchanged. This is
consistent with the requirement that the average
short-range order intensity is a constant and indepen-
dent of the state of order. The rather large discrepancy
between observed and calculated Ago in both planes is
almost surely due to residual temperature diffuse
scattering which the extrapolation failed to remove
from the measurements. It should have little effect on
other Apq.

No effect of thermal motion on the sharpness of the
diffuse scattering distribution was observed. This
effect, originally proposed by Muldawer (1952) and
more recently treated by Walker & Keating (1961)
requires that as the temperature is raised the short-
range order peaks become broader. Complications
associated with this effect were intentionally avoided
by making measurements as near to the origin in
reciprocal space as possible, and by making all
measurements at room temperature or below.

Very little if any of the intense diffuse scattering
near the fundamental Bragg maxima for disordered
alloys predicted by Huang (1947) and found by Borie
(1957) for CusAu was observed. In fact, after the
extrapolation to eliminate the temperature diffuse
scattering, the residual diffuse scattering near the
Bragg maxima was quite flat and very weak. In view
of the unusual character of the atomic displacements in
this case, it is perhaps not surprising that the predic-
tions of Huang’s elastic model do not hold.

Though the model used here for comparison with
experiment presumed that all of the aluminum atoms
occur in sets of four to form tetrahedra, the quality of
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the agreement with experiment is not so good that it
precludes the possibility of occasional incomplete
tetrahedra or occasional isolated aluminum atoms. It
would be of considerable interest to study more dilute
alloys to see whether the tetrahedral arrangement
found here persists even when the concentration is so
low that each aluminum atom has the chance to isolate
itself completely from like second and third nearest
neighbors. It is clear that the experimental techniques
for measurements of the sort described here are now
sufficiently refined that meaningful results for alloys
considerably more dilute may be obtained.

The authors wish to thank M. S. Wechsler and R. H.
Kernohan, who suggested the problem, prepared the
samples, and carried out the irradiation.
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An Application of the Symbolic Addition Method to
the Structure of L-Arginine Dihydrate

By IsaBELLA L. KARLE AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.

(Recetved 25 July 1963)

The crystal structure of r-arginine dihydrate was determined directly by means of the symbolic
addition phase determination procedure, using the complete three-dimensional data obtained from
Cu radiation. The space group is P2,2,2, and the cell dimensions are:

a=568, b=11-87,

and ¢=1574 A .

The arginine molecule is a zwitterion with the guanidyl group, rather than the amino group,
accepting an extra proton. Two planes characterize the arginine molecule, one through the acid
group, and the other through the extended side chain which contains the guanidyl group. The
dihedral angle between these planes is 74°. The arginine molecules and the water molecules each make
infinite chains perpendicular to each other by hydrogen bonding. All 18 hydrogen atoms have been

located.

Introduction
L-Arginine, +(H2N)sCNH(CH,)sCH(NH:)COO-, is one

of the amino acids essential for animal growth. It is
also the most basic of the amino acids since, in addition
to the x-amino group, it also contains a terminal
guanidyl group. This investigation afforded a good
opportunity to study a biologically important amino
acid structure and its associated hydrogen bonding.
It also provided a valuable experience in the first ap-

plication of the symbolic addition method for phase
determination (Karle & Karle, to be published) to a
non-centrosymmetric crystal.

Experimental

Purified L-arginine was obtained from the Central
Research Laboratories of General Mills, Inc. Re-
crystallization from water at room temperature yielded
crystals of the dihydrate which were colorless, transpa-



