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The distribution of diffuse" X-ray scattering in two planes in reciprocal space for the substitutional 
solid solution copper-16 at. % aluminum was measured. The symmetry of the distribution showed 
that  there is not only short-range order but as well small static atomic displacements from the 
expected sites. The short-range order intensity was separated from that  associated with the static 
displacements and the two were treated separately. 

It  was fotmd that  the order parameters were satisfactorily reproduced by the following model. 
The A1 atoms are distributed on the atomic sites in sets of four so that  they occupy the corners 
of a distorted tetrahedron. The tetrahedra are distributed at random except that  no two may be so 
close that  they form an A1-A1 nearest neighbor pair. All other sites are occupied by Cu atoms. 

Measurements after neutron irradiation showed that  such exposure caused a small but significant 
increase in the state of order. 

Introduction 

The face-centered cubic subst i tu t ional  solid solution, 
copper-16 a t .% a luminum,  became of interest  because 
of the radia t ion damage experiments  of Wechsler  & 
Kernohan  (1958, 1962) and  Kernohan  & Wechsler  
(1961). These experiments  showed tha t  the electrical 
res is t ivi ty  of this  alloy decreases as a function of t ime 
in the reactor, passes through a min imum,  and then  
increases continuously.  Since pure metals  do not 
exhibi t  such a decrease, it  was suggested tha t  the 
resis t ivi ty  change m a y  be associated with a radiation- 
induced change in the short-range order present  in 
the alloy. To determine whether  or not  this  is the 
case, diffuse X-ray  scattering measurements  were made 
on single crystals of the alloy before and after exposure 
to reactor irradiat ion.  Reported here are the results 
of those measurements  and their  interpretat ion.  

As will be seen, an interest ing and different distr ibu- 
t ion of diffuse in tens i ty  was found, reflecting not only 
short-range order bu t  as well displacements  of atoms 
from the sites of the average lattice. The combined 
in terpre ta t ion  of the short-range order diffuse scat- 
ter ing and the modulat ions  result ing from the atomic 
displacement  yields an unexpected short-range struc- 
ture for copper -a luminum solid solutions. 

Measurements  of short-range order before and after 
i r radia t ion for this  al loy have been reported by  
Houska & Averbach (1959). However, their  use of a 
powder sample results in an averaging of the in tens i ty  
over a sphere about  the origin in reciprocal space. 
This consequent loss of detail  in the in tens i ty  distribu- 
t ion causes a precise in terpre ta t ion of the observed 
order parameters  to be very  difficult.  

* Operated for the U.S. Atomic Energy Commission by 
Union Carbide Corporation. 

Exper imenta l  

A single crystal  of in tended composition copper-16 
a t .% a luminum was grown in a graphi te  mold and  
homogenized at  750 °C for 2 hr followed by slow cooling 
to room tempera ture  at  a rate of about  20 °C per hr. 
Slabs 5/8 in. in d iameter  of appropriate  orientat ion 
were cut from the ingot and polished mechanica l ly  
and electrolyt ical ly to remove the distorted surface 
layer  and to produce a bright,  clean surface. The 
samples were then  annealed at  150 °C for 54 hr in 
order to increase the amount  of order. 

The latt ice constant  of our alloy was observed to 
be 3-6545 A. This value corresponds closely to the 
in tended composition of Cu-16 a t .% A1, according to 
the measurements  of Bradley  & Goldschmit  (1939), 
Obinata  & Wasserman  (1933), Stirling & Raynor  (1955), 
and Wechsler  & Kernohan  (1958), all of which agree 
well wi th  each other. 

The diffractometer  used for the diffuse scattering 
measurements  was a General Electric X R D  5 equipped 
with a goniostat. The diffractometer  was modified to 
step scan automat ica l ly  and pr int  for preset t ime. A 
l i th ium fluoride monochromator,  doubly bent  as sug- 
gested by  Warren  (1954), and Cu Ka radia t ion were 
used. The detector was a sodium iodide scinti l lat ion 
counter wi th  pulse height  discrimination.  A balanced 
pair  of nickel-cobal t  fil ters were used to el iminate the 
half-wavelength component  from the monochromator  
and the copper fluorescence this component  excites in 
the sample. The specimen was supported in a l iquid 
ni trogen cryostat,  so tha t  measurements  could be 
made either at room tempera ture  or at - 1 9 5  °C. The 
volume surrounding the sample was evacuated,  to 
provide thermal  insulat ion for the low-temperature 
measurements  and to e l iminate  air  scattering. All 
measurements  were converted to absolute units  by  

AC 17--54 
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Fig. 1. The diffuse intensity distribution at  - 1 9 5  °C for the unirradiated sample. Compton scattering has been removed, but  
no temperature  diffuse scattering correction has been made. The quant i ty  plotted is 1000I (in electron units)/2YJ~cu. Closely 
spaced contours greater than 200 near the Bragg maxima have been omitted. The inset illustrates schematically the two 
planes in reciprocal space in which the measurements  were made. 

comparing the intensity with tha t  observed at high 
scattering angles from an amorphous material, poly- 
styrene. 

Measurements at  two temperatures were made in 
order to eliminate contributions to the diffuse scat- 
tering due to thermal motion. Since the temperature 
diffuse scattering is nearly proportional to the absolute 
temperature,  a linear extrapolation to absolute zero 
was used. 

The diffuse intensity was determined in two planes 
of reciprocal space: the hl, h2, 0 plane and the h~, h2, 
(hl+h2)plane. (h~, h2, and ha are continuous variables 
defining a point in reciprocal space.) The lat ter  plane 
has hexagonal symmetry,  with a [111] direction for 
its normal. Fig. 1 shows the diffuse intensity distribu- 
tion in these two planes measured at - 1 9 5  °C. 

After completion of the diffuse intensity measure- 
ments, the samples were exposed for 157 hr at 100 °C 
in hole D at  the center of the ORNL Graphite Reactor. 

The integrated thermal neutron flux for this exposure 
is approximately 5.2 × l017 neutrons cm-2. A resistivity 
sample of similar composition to the X-ray samples 
was irradiated in the same capsule. The exposure 
caused the resistivity to decrease from 8.472 to 8.335 
Fohm.cm. This decrease corresponds closely to the 
minimum in the resistivity versus time of irradiation 
for an irradiation temperature of 100 °C (Kernohan 
& Wechsler, 1061). Following the irradition, the diffuse 
scattering measurements were repeated. Figs. 2 and 3 
compare the intensity distribution before and after 
irradiation for the two planes in reciprocal space. 

I t  is clear from the figures that  the effect of neutron 
irradiation is a slight sharpening of the pattern, cor- 
responding to small increases in the magnitudes of the 
order parameters, but the general features of the 
intensity distribution are the same. This is substan- 
t ially in agreement with the previously reported result 
of Houska & Averbach (1959). 
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Irradiated 

Fig. 2. A comparison of the diffuse intensi ty distribution in 
the (hlheO) plane for the irradiated and unirradiated samples. 
The intensity is shown in the square 0 < h i ,  he< 1. The 
quant i ty  plotted is the same as in Fig. 1, except tha t  the 
tempera ture  diffuse scattering has been removed. 
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~ ~'~ U n i r r a d i a t e d  

Fig. 3. A comparison of the diffuse intensity distribution in 
the (hz, h~, h 1 -~ h~) plane for the irradiated and unirradiated 
samples. The intensity is shown in the triangle 0 < h I -t- h2 < 1. 
The quant i ty  plotted is the same as in Fig. 2. 

D e t e r m i n a t i o n  of the  s h o r t - r a n g e  
s t ruc ture  p a r a m e t e r s  

The in terpre ta t ion  of the in tens i ty  pa t te rns  of Figs. 2 
and  3 is most  useful ly done in terms of the size effect 
theory of Warren,  Averbach  & Roberts  (1951). Ac- 
cording to their  result ,  for a face-centered cubic 
substance the diffuse in tens i ty  in electron units  per 
a tom (1/N), divided by  mAms(fA--fB) 2, m a y  be wri t ten  
as the sum of two series: 

I (hlh2h3)/ImA me (fA - f8)2 

= Z ~Zm~ cos 2~(hll + h~m + hsn) 
lmn 

- -  .Z 2~flzmn(hll + h2m + han) sin 27~(hll + h2m +han). 
lrnn 

The sums are t aken  over all  values of the integers 
l, m, and  n. The two kinds of a tom have scattering 
factors fA and  fB, and their  atomic concentrations in  
the alloy are mA and me. The continuous var iables  
hi, h2, and ha define a point  in  reciprocal space, and  
at  the Bragg m a x i m a  they  take on values equal  to 
half  of the Miller indices. The integers lmn define a 
par t icular  lat t ice site 

rzmn = l(al/2) + m(a2/2) + n(a3/2) 

where ala2a3 are the cubic unit-cell  vectors. For a face- 
centered cubic structure l + m + n  must  be even. The  
short-range order parameter  azmn and the size effect 
parameter  fl~nn are as defined by  War ren  et al. (1951). 
All az~n except  a000 vanish  if the atoms are r andomly  
dis t r ibuted on the  sites, and all flzmn vanish  if all  of 
the  atoms lie precisely on the sites of the average 
latt ice.  

Since our measurements  were all  of in tens i ty  
dis t r ibut ions in  planes of reciprocal space, i t  is useful 
to rewrite the in tens i ty  in  i ts  two-dimensional  form: 

I '  (hxh2) = Z Ap q cos 2~(h~p + h2q) - ~ (h~B~q + h2Bqpq) 
Pq Pq 

× sin 27~(hlp + h2q). (1) 

In  the hlh20 plane 

1 '  - -  - -  . N m A m B ( f A - - f B )  ~" , A p q  

I(hlh20) 
= Z avqn, and B~q = 2~p ~ p q n  ; 

n n 

- ~ ~0 ~ 

I0 O0 

Fig. 4. The intensity distribution of Fig. 2 after  remova] 
of the atomic displacement modulations. 
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Table 1. Observed and computed values of Avq 
(h 1, h 2, 0) p l ane  (hi, hz, h I + hz) 

O b s e r v e d  

pq I r r a d .  U n i r r a d .  Calc. 

00 + 1-886 + 1.732 + 1.500 
10 - - 0 . 6 6 9  - -0 .610  - -0 .564  
11 -- 0.024 -- 0.063 -- 0.072 
20 + 0 . 2 5 2  + 0 . 2 5 4  + 0 . 2 3 1  
21 + 0-099 + 0.086 + 0.100 
22 - - 0 . 1 2 4  - -0 .080  - -0 .172  
30 - -0 .195  - -0 .168  - -0 .156  
31 -- 0-026 - 0.032 - 0.077 
32 + 0.050 + 0.024 + 0.044 
40 + 0"060 + 0.072 + 0.074 
41 +0.089 + 0 " 0 5 0  +0.028 
33 -- 0.009 + 0.004 + 0-030 
42 -- 0.074 -- 0.040 + 0.004 
43 + 0.038 + 0.026 -- 0.002 
50 -- 0.064 -- 0.052 0.000 
51 - -0 .023  - -0 .024  - -0 .001  
52 + 0 . 0 2 6  + 0 . 0 1 8  + 0 . 0 0 8  
44 - -0 .077  - -0 .045  + 0 . 0 1 6  
53 - - 0 . 0 0 8  - -0 .007  + 0 . 0 1 I  
60 + 0.076 + 0.044 + 0.005 
61 - -0 .018  - -0 -006  + 0 . 0 0 4  
62 + 0.020 + 0.001 + 0.001 
54 + 0.041 + 0.022 + 0.004 
63 -- 0.027 -- 0.002 0.000 
70 -- 0.027 -- 0.011 0.000 
55 - -0 -017  - -0 .010  + 0 . 0 0 2  
71 -- 0.018 -- 0.003 0.000 

p l a n e  

O b s e r v e d  
^ 

r 

pq I r r a d .  U n i r r a d .  Calc.  

00 + 1.209 + 1.354 + 0.848 
10 - -0 .161  - -0 .139  - -0 .129  
21 - -0 .225  - -0 .205  - -0 -184  
20 + 0 . 1 7 1  + 0 . 1 7 7  + 0 - 2 0 5  
31 - -0 .012  - -0 .015  - - 0 . 0 3 6  
30 + 0.064 + 0.053 + 0.055 
42 + 0.036 + 0-034 + 0.020 
41 - -0 .061  - -0 .063  - -0 -076  
40 + 0.013 + 0.008 -- 0.034 
52 + 0.030 + 0.020 + 0-022 
51 - -0 .012  - -0 .012  - -0"006  
50 + 0-044 + 0.034 + 0"033 
63 - -0 .019  - -0 .017  + 0 . 0 0 2  
62 + 0.006 + 0.003 + 0.005 
61 - -0 .012  - -0 .012  + 0 . 0 1 0  
60 + 0.001 -- 0.003 -- 0.001 
73 + 0 . 0 0 3  0.000 + 0 . 0 0 2  
72 + 0.010 + 0.012 + 0.004 
71 - -0 .009  - -0 .007  + 0 . 0 0 1  
84 - -0 .006  - -0 .001  + 0 . 0 0 8  
70 + 0.013 + 0-011 + 0-001 
83 -- 0.007 -- 0.005 + 0.009 
82 -- 0.002 -- 0.002 + 0.005 
81 -- 0.004 -- 0-004 + 0.002 
94 + 0.007 + 0.003 + 0-002 
93 - -0 .001  - -0 .001  + 0 - 0 0 2  
80 + 0.004 0.000 0.000 

and in the hi, h2, hi + h~ plane 

I' = I(hl, h2, hi + h2) 
1YmAmB(fA--fB) 2 ,Avq = .~,~ ap-n, q-n, n, and 

BPq = 2~p ~ flY-n, q-n, n . 

n 

A method is available (Borie, 1961) to separate the 
two series of equation (1). Figs. 4 and 5 show the 
intensity distributions after removal of the atomic 
size effect modulations. Fourier inversion of these 

radlate.d 

Fig .  5. T h e  i n t e n s i t y  d i s t r i b u t i o n  of Fig .  3 a f t e r  r e m o v a l  
of t he  a t o m i c  d i s p l a c e m e n t  m o d u l a t i o n s .  

plots, done with the aid of an IBM 7090, yielded the 
parameters Avq, which are given in Table 1. Table 2 
gives B~q for the unirradiated sample in the hlh20 
plane. 

Table 2. Observed values of BPvq for the unirradiated 
sample in the (hlh20) plane 

p = l  2 3 4 5 

q = 0 - -0 .019  - -0 .104  + 0 . 0 0 6  + 0 - 0 2 8  - -0 -005  
1 - -0 .031  + 0 . 1 4 7  - -0 .023  - -0 -022  - -0 .004  
2 + 0 . 0 0 2  - -0 .101  + 0 - 0 0 4  + 0 - 0 3 4  - -0-021 
3 + 0 . 0 1 6  + 0 - 0 5 8  + 0 . 0 0 2  - -0-021 + 0 . 0 1 7  
4 - -0 .019  - -0 -026  - -0 .009  + 0 - 0 1 5  - - 0 . 0 1 2  

Interpretation of the parameters  Apq 

We defer to a later section a discussion of the effect 
of radiation, and consider first the rather more 
interesting problem of interpreting the diffuse scat- 
tering in terms of the short-range structure of the 
alloy. 

The parameters Avq define the diffuse scattering 
which would have been observed if none of the atoms 
were displaced from the sites of the average lattice. 
The diffuse peaks shown in Figs. 4 and 5 do not occur 
at  the normal superstructure positions, but rather,  
they form a 'four-leaf clover' arrangement of satellites 
about each superstructure position, in a fashion similar 
to tha t  found by Guinier & Griffoul (1948) for CusAu 
quenched from high temperature and then heat t reated 
for a short time below the critical temperature. They 
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interpreted their  pa t te rn  in  terms of h ighly  ordered 
ant iphase  domains,  the domains being bounded by  
faul ts  on the (100) planes in such a way tha t  gold 
atoms have only copper nearest  neighbors. As the 
domain  size increases, the satelli tes become closer to 
the  normal  superstructure positions, f inal ly  merging 
wi th  each other at these points as the domains become 
large. 

In  our case, the satell i tes are quite a bi t  fur ther  
from the superstructure positions t han  those found 
by  Guinier & Griffoul. In  fact, the  in tens i ty  seems to 
cluster about  points half-way between them and to 
be re la t ive ly  weak at points such as hlh20 = ½ ½ 0. This 
would imply  an  ext remely  small  domain  size. 

The above considerations make  it  t empt ing  to 
assume tha t  the atomic configuration at  a domain  
boundary  is the most  common atomic ar rangement  in  
our alloy. Fig. 6 i l lustrates  how the crossing of such a 
boundary  (the xy plane) gives rise to distorted tetra- 
hedral  arrays.  

Fig. 6. Two face-centered cubic unit cells shown schematically 
to illustrate the atomic sites of the distorted tetrahedron 
discussed in the text. 

In  principle,  one should be able to obta in  a set of 
azmn from a least-squares fi t  to the exper imenta l ly  
de te rmined  Apq in  two planes in  reciprocal space. In  
practice it  was found tha t  the atmn were overdetermin- 
ed and a var ie ty  of results could be obtained depending 
on how the various equations in al ton are weighted 
relat ive to each other. However, all  sets of aZmn SO 
determined which are reasonably plausible include 
a value of an0 of about  - 0 . 2 ,  the largest possible 
negat ive value this  parameter  m a y  take on. This 
means  tha t  there are no Al-A1 nearest  neighbors in 
the alloy. This is consistent with the te t rehedral  ar- 
rangement  of Fig. 6 if the corner atoms are taken to 
be A1 and  if all of the nearest  neighbors of the four 
corner positions are t aken  to be Cu. 

There is a fur ther  factor which tends to make the 
existence of such te t rahedra  plausible.  The measure- 
ments  of Brad ley  & Goldschmit  (1939), Obinata  & 
Wasse rman  (1933), and Stir l ing & Raynor  (1955) all  
show the atomic volume to increase much more slowly 
wi th  increasing A1 content t han  one would compute 
from the lat t ice constants  of pure Cu and pure A1. 
If one extrapolates  to 25 at. % A1, one obtains just  the 
average atomic volume found by  Tarora (1949) for 

fll CUBA1. This phase is metas table  and  results upon 
quenching the fl phase (b.c.c., disordered) to room 
temperature .  Fur thermore ,  the fll phase has the 
BiF3(DO3) structure,  in which regular te t rahedra  are 
del ineated by  the A1 atoms occupying four of the eight 
corners of a body-centered cell. In  this  s tructure there 
are no A1-A] nearest  neighbors. The dotted cell of 
Fig. 6 shows such a te t rahedron,  distorted to f i t  a 
face-centered cubic lattice. 

In  the l ight  of the above, i t  was decided to a t t empt  
to compute azmn from the following model" The al loy 
is composed of A1 te t rahedra  as shown in Fig. 6. They 
are dis t r ibuted more or less at  random on the sites of 
a latt ice otherwise populated by  copper atoms, with the 
restr ict ion tha t  no two te t rahedra  m a y  be so near  each 
other tha t  t hey  cause A1-A1 nearest  neighbors. There 
are six possible orientations of te t rahedra,  all  assumed 
to be equal ly  probable.  One orientat ion is shown in 
Fig. 6; a second orientat ion m a y  be obtained by  a 90 ° 
rotat ion about  the z axis. In  Fig. 6 the extended axis 
is along the z axis;  the  four other orientat ions are 
obta ined by  allowing the extended axis of the tetra-  
hedron to be paral le l  to the  other two cube axes. 

To compute the diffuse in tens i ty  for this  model  i t  
is convenient  to rearrange the in tens i ty  expression. 
The short  range order parameter  at associated wi th  
the lat t ice vector r ,  m a y  be wr i t ten  at = 1 -  (pt~A/mB). 
The quan t i t y  p ~  is the  probabi l i ty  of f inding a B 
a tom at  site t after  f irst  having  found an A atom at  the 
origin. Wi th  p ~  = 1 _ p t ,  since roB= 1 --mA, we m a y  

- -p .4 .4) /m~=p~/mB--mA/mz.  With  write at = 1 -- (1 t t 
fA --fB = / I f  we m a y  write IsRo, the  in tens i ty  associated 
with short range order, in electron units  (Cowley, 1950) 

IzRo//I f 2 = NmAmB Z at exp ( ik .  rt) 
t 

= ~ NmA ptA exp ( ik .  rt) -- Z ~ m ~  exp ( ik.  rt ). 
t t 

The quan t i ty  Nm~p~z  in the first  sum J is s imply 
the total  number  of A - A pairs in the crystal  separated 
by rt. In  the second JR, Nm~ is the number  of pairs tha t  
would have been obtained if the atoms were dis t r ibuted 
at  random. Hence the problem of comput ing IsRo 
from a model rests in a calculation of J .  If  q~ is an 
ampl i tude  such tha t  J =qpqp*, then  ~ = ~," exp ( ik.  r t ) .  

The summat ion  for ~ is t aken  only over those sites 
occupied by A atoms. 

We wish to write ~ in terms of the te t rahedra ,  and  
to do tha t  i t  is convenient  to assign to each 
te t rahedron a s tructure factor. Wi th  the origin chosen 
to be the center of the te trahedron,  for the or ientat ion 
shown in Fig. 6 we m a y  wri te  

F = exp [2~i(hl - h3)] + exp [2~i( - hi - h3)] 

+ exp [2~i(h2 + hs)] + exp [2zi( - he + ha)] . 

Similar  s tructure factors m a y  be wri t ten  for the other 
five orientations.  Then cf = .,~ Ft exp (ik.  rt). The sum- 
mat ion  is now carried out only over those sites which 
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are centers of t e t rahedra .  This is one-fourth of the  
to ta l  number  of A1 sites. I f  site t is the center of a 
te t rahedron,  F t  m a y  be any  one of six possible 
s t ructure  factors.  We m a y  then write 

J = ~ ~/~tFt*, exp [ ik.  ( r t - r t , ) ]  • 
t t '  

Let  p ~ n  be the  probabi l i ty  of finding a t e t rahedron  a t  
r~mn af ter  f irst  having found one a t  the origin. Then 

J -- (NmA/4) Z p,m~<FF*}zmn exp [27~i(h~l + hem + h3~)]. 
lrnn 

To compute <FF*}z,nn, we assume tha t  if several 
relat ive orientations of the two te t rahedra  are possible, 
t hey  are all equal ly  probable.  For  JR, ptmn-~ mA/4 
and So 

IsRo/A f f  = (NmA/4).X (pz~.(FF*}~m. 
lmn 

--(mA/4)<F} e} exp [2~i(hll + hem + h3n) ] . 

I t  is s t ra ight forward  but  tedious to compute from 
the above expression the probabi l i ty  of finding AI-A1 
pairs in the  various coordination shells and hence the 
a~mn, once p~mn is given. Reasonable  values for p~m~ 
were assumed in the following way :  For  rzmn greater  
t h a n  some rLMN, p~m,~=mA/4, <FF*}~mn=<F} e, and 
there is no contribution to ISRO associated with that 
coordination shell. To conserve the composition of the 
alloy, the average value of pz~n within the sphere of 
radius rLMN must be mA/4. Given a tetrahedron at 
the origin (p000--i), p~n for the first several coordina- 
tion shells must be zero in order to avoid creating 
AI-AI nearest neighbors. Specifically, p~mn=0 for 
Imn= ii0, 200, and 211. The first possible tetrahedron 
sites are in the 220 shell, and only a few of the six 
possible orientations are allowed. The largest r~ for 
which fewer than all six tetrahedral orientations are 
possible is lmn=330. Hence, there should be short- 
range order among the tetrahedra at least out to that 
shell. We assumed that L e + M 2 +/V e-- 20, which 
should correspond to the minimum amount of order 
possible, given that all the A] atoms are arranged in 

Table 3. Calculated three-dimensional short.range 
order parameters from the tetrahedron model 

lmn ~lmn lmn O~Imrt 

000 + 1'000 431 0'000 
110 -0-190 521 +0.002 
200 + 0.213 440 + 0.008 
211 +0.045 530 +0.007 
220 - 0.004 433 - 0.001 
310 -0.083 442 +0-004 
222 -0-076 600 +0-003 
321 +0.003 611 +0.002 
400 +0-034 532 +0-002 
411 +0.012 620 +0.001 
330 - 0.002 541 + 0.002 
420 + 0.012 622 0.000 
332 +0-017 631 0.000 
422 - 0.008 444 0.000 
510 -- 0-009 550 + 0.002 

te t rahedra .  For  6 < 1 e-t-m e + n  e < 20, p z ~  mus t  be 
greater  t han  mA/4 in order to compensate for the  
forbidden sites near  the  origin. P resumably  it mus t  
begin a t  lmn= 220 with a modera te ly  large value and 
decrease slowly to mA/4 a t  lmn=420. In  the  range 
6 < 1 e + m e + n e < 20, the probabi l i ty  was t aken  to be 
pz,nn = mA/4 + K~/(20 - 1 e - m s - n2), the constant  K being 
chosen to conserve the  composition of the alloy within 
the  sphere of radius rde0. Table 3 gives the  short- 
range order pa ramete rs  computed with this model. 

Table 1 compares the  observed values of A~q with 
those computed f rom tha  above model. A more 
complicated model, allowing certain relat ive orienta- 
tions of the t e t r ahedra  to be preferred, could probably  
improve the agreement .  However,  it  was felt  t h a t  the 
agreement  obtained was sufficiently good not  to make  
this e laborat ion worthwhile.  

Interpretation of the parameters B~q 

I t  is evident  from the figures t ha t  the modulat ions  of 
the diffuse in tens i ty  associated with  the series in B~q 
(equation 1) are both large and unusual .  A comparison 
of Figs. 2 and  3 with 4 and 5 shows t h a t  a considerable 
difference in the  in tensi ty  dis t r ibut ion results when 
they  are removed. I n  other  systems in which the  
effect has been observed (Roberts,  1954; Ba t t e rman ,  
1957; Boric, 1957), i t  is found t h a t  the  short-range 
order diffuse intensi ty  is dis tor ted most  by  their  
presence along lines in reciprocal space through the  
fundamenta l  reflections such as hi00 or hll0.  In  this  
alloy, however, as m a y  be seen from Fig. 1, the  effect 
of the modulat ions  is most  apparen t  along lines such 
as hi½0 or hl~0; t h a t  is to say, along lines through the 
usual supers t ructure  positions for a face-centered 
cubic alloy. 

In  general one would expect  t h a t  all flz~n would 
have a common sign - -  a consequence of the fact  t h a t  
the distance between pairs of ' larger '  a toms for all 
combinat ion shells is greater  t h a n  the distance 
computed from the average undis tor ted  lattice. Table 
2 shows tha t  for this alloy both positive and negat ive  
values of flzmn occur. This means t h a t  for some coordina- 
t ion shells the dis tance between say  A]-A] pairs  is 
grea ter  t h a n  tha t  associated with the average lattice, 
and for some others is is less. 

I t  is also f requent ly  supposed t h a t  the  largest  fllmn 
is associated with the first coordination shell, and that 
flzmn becomes smaller  as le+m2+n 2 becomes large.r. 
Table 2 shows t h a t  for this alloy this is not  so. The 
largest  value of B~q occurs for pq=21 ,  which is 
independent  of both the  first  and second coordination 
shells. The next  largest  value (for pq = 20) is of opposite 
sign and independent  also of the  nearest  neighbors. I n  
fact ,  those B~q which are influenced by  the  neares t  
neighbors (pq= 10 and 11) are quite small  compared 
with a t  least  three other  B~q. 

The da t a  of Table 2 show another  interest ing 
anomaly  which m a y  not  be explained in t e rms  of the  
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simple size effect theory as developed by Warren, 
Averbach & Roberts (1951). For the lmn coordina- 
tion shell, let Aa Rtm n be the average vector separation 
between pairs of A atoms, and let r~mn be the vector 
separation that  would have been found if there were 
no static displacements from the sites of the average 
lattice. Then 

AA AA 
R l m n  = r lmn  + ~lmn " 

In the Warren-Averbach-Roberts theory it was as- 
sumed that  this relation could be written 

aa rlmn(1 AA R l m  n = + elm n) (2)  

where elm nAA is a small scalar. That is, it was assumed 
that  A~ 5t~n is always parallel to r ~ .  A consequence of 
this assumption is that  the theory can be developed 
in terms of a set of parameters fllmn which are deter- 
mined by ezm~,ax eZ~,BB and O~Zmn. fl~mn is independent of 
the order of l, m, and n and is thus a constant for any 
coordination shell. In the hlh20 plane, since 
B~q = 2~p_~flpq,,, it follows that  (1/p)B~q = (1/q)B~q. 

n 
Table 2 shows quite clearly that  the data do not have 
this property. For example 1 2 ~B21 = ½( + 0.147) = 0.073, 
while Ba12 = + 0.002, a difference which is quite outside 
the accuracy of the measurements. A similar compari- 
son may be made between B s ~1 and B~, and between 
B~ and B~a. Hence, for this alloy, the assumption that  
~,n,,AA = r~m~S~m~a does not hold, and the diffraction 
theory must be modified. That this might be so in 
some cases has been suggested by Guinier (1954). 

The Warren-Averbach-Roberts treatment may be 
easily modified to obtain ~ more general expression 
valid for this alloy. With 

AA AA ~. AA 1 AA ~tmn = Ltmn ~a~ + Mtm n ~ae + ~imn ½a3 
and 

BB BB BB 1 BB ~tmn = Ltmn½al + Mtmn~az + Ntmn½aa 

one finds that  IAD, the contribution to the diffuse 
intensity associated with the atomic displacements, 
may be written in electron units 

IAD/NmAmB(fA-- fB)  ~ 
= - 2 x / ( f a - f , )  ~ [h~ {L~Am~(a,~, + (ma /m , ) ) f a  

lmn 
BB - + 

+ he {Mi~m~ (atm, + (mA/mB))fa 
BB - + 

AA + + 
BB 

- -  2Ylmn(O¢lm n "~- ( m . l m ~ )  ) / B }  ] 

x sin 2~(h l l+h~m+h~n)  . (3) 

Except that  the assumption of equation (2) has not 
been made, the derivation is exactly parallel to that  of 
Warren, Averbach & Roberts. If we let 

AA 
= + ( m A m . ) ) f .  

BB --Lzmn(a~m,+(mB/mA))fB} (4) 

with similar expressions for 71~n and 7~m., equation (3) 
becomes 

IAD/NmAmB(fA__fB)9. .~, Z ,~ . = - -  ( h l y l m n  -~- h2y lmn  -~- h3ylmn)  
iron 

x sin 2~(hll + h2m + h3n). (5) 

We may imagine the 7's to be components of an atomic 
displacement vector Flmn = (7~m,, Yl~n~, Y~m~) of arbi- 
t rary magnitude and direction. With the assumption 
of equation (2), it becomes FZm~=2~fllmn(1, m,  n), and 
equation (5) reduces to the Warren-Averbach-Roberts 
result. For highly symmetrical values of lmn such as 
110 or 200, this is an adequate representation of F~mn. 
But for say l m n = 2 1 1 ,  there is no physical necessity 
that  7~11 = 27~n. 

In the hlh~O plane, then, with IAD given by (5), we 
may write 

B~q = Z ~ q , .  (6) 
n 

We will not attempt the very difficult task of 
finding a model which will reproduce all B~q. Rather, 
we will compute only the first several using the basic 
~etrahedron arrangement applied to the short-range or- 
der coefficients. We will show that  if one displaces the 
four aluminum atoms which make up the tetrahedron 
from their sites in such a way that the tetrahedron 
becomes more regular, one obtains reasonably good 
agreement with the experimentally observed values. 

Consider the dashed body-centered cell of Fig. 6, 
with aluminum atoms at four of its eight corners 
forming a tetrahedron. Let the aluminum atoms be 
moved from their sites so that  the dotted cell is cubic 
and the tetrahedron is undistorted. If this is done so 
that  the atomic volume within the dotted cell is the 
same as that  of the undistorted f.c.c, cell, then the 
dotted cell edge a is related to the f.c.c, lattice constant 
a0 by ½a 3 = ¼a], or a = 0.Sa0. With aluminum atoms 
labeled A, we have that  

82o0AA = ]/2(0"8ao)--ao=O'13ao or 82~0 A = (+0-26 ½a0,0,0) 

Similarly 

82~a~=(-0.40½a0, +0.131a0, +0.13½a0). 

[iZmn except those We have ignored all contributions to ~a 
associated with a single tetrahedron. 

There are no A A  nearest neighbor pairs so that  81A~0 
is meaningless. However, for the copper atom oc- 
cupying the body-centered position of the dotted cell, 

AB__ 8n0-0 ,  since the atomic volume of the tetrahedron is 
unchanged by the atomic displacements. 

If we ignore the contribution of B B  pairs to equation 
(4) on the grounds that  they should not be significantly 
affected by a distortion conserving atomic volume, and 
if we take fA and fB to be proportional to the atomic 
numbers of aluminum and copper, we have 

y ~  13 LAa =---2~( i - , ) (~x~.+(ma/mB))  z~. . 
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Since only one of the six 200 neighbors can be a part 
of the tetrahedron (see Fig. 6) we take 

a20o = 1 - (~/0.84) = +0.01 , 
and 

~ o o  = " ,3  - -  2~(~) (0.01 + 0.19) ( + 0.26) = - 0.27. 

Similarly 
~11 = + 0.20 and ~ln = - 0.07 . 

The above calculation was made assuming that  the 
atomic displacements were such that  the tetrahedron 
is regular. If the displacements are only one-third 
that great, and if we use equation (6) to compute BPq, 
we find that  BlXo = 0.000, B l 1  = - -  0.047, B]2 = - 0-047, 
B220=-0"090, and B~I= +0.133. These values agree 
quite well with those given in Table 2, except for B~2 
which is in any case small and could easily be influenced 
by the higher order 9 ,~  contributions which have been 
omitted. The two largest values of BPq of Table 2 have 
been reasonably well reproduced by the calculation. 

This interpretation of the atomic displacement effect 
in this alloy is admittedly crude, and necessarily 
dependent on assumptions which, though plausible, 
are hardly certain. I t  does, however, seem to coIffirm 
that  the tetrahedra are more nearly regular than one 
would compute from the average lattice constant. 

D i s c u s s i o n  

I t  has been shown from an interpretation of diffuse 
scattering measurements that  the short-range structure 
of the alloy copper-16 at.% aluminum consists of a 
more or less random arrangement of tetrahedra of 
aluminum atoms. The four corners of the tetrahedron 
are occupied by aluminum atoms, and its center is a 
copper site. All of the nearest neighbors of the four 
corner sites are copper so that  there are no Al-Al pairs 
in the first coordination shell. Of the six tetrahedron 
edges, two are second-nearest neighbor distances and 
four are third-nearest neighbor distances, so that  the 
tetrahedron is not regular. However, the atomic 
displacement modulations of the diffuse scattering 
show that the aluminum atoms are displaced from the 
sites of the average lattice in such a way that the 
tetrahedra become more nearly regular. 

I t  is clear that  the unusual atomic displacement 
modulations encountered in these measurements are 
not simply the consequence of atomic size as originally 
proposed by Warren, Averbach & Roberts (1951) and 
Guinier (1954), and as found in copper-gold alloys by 
Roberts (1954), Batterman (1957), and Boric (1957). 
They are rather the result of an effort to maintain 
the bond angles and distances of a regular tetrahedron, 
and they therefore show that  the atomic bonds in this 
alloy have considerable non-metallic character. I t  is 
proposed that  the atomic size effect originally treated 
by Warren, Averbach & Roberts be more generally 
called the atomic displacement effect. 

Values of the experimentally determined B~q in the 

(hlh2ho) plane are given for the unirradiated sample 
only because their interpretation is at the moment 
rather primitive, and because they are less accurately 
known than the Avq. Essentially, their determination 
depends on a small difference between two numbers, 
while Avq depends on the average (Boric, 1961). For 
the unirradiated sample, slightly larger Bp~q were 
observed. The writers are convinced, however, that  
in principle much important information about the 
structure of disordered solid solutions is inherent in 
these parameters, and that  much remains to be done 
both in terms of their measurement and their inter- 
pretation. 

This experiment confirms the result of Houska & 
Averbach (1959) that  the state of order has increased 
after irradiation, presumably because of radiation 
enhanced diffusion. However, Table 1 shows that  the 
increases in the order parameters are small compared 
with those reported by Houska & Averbach, and in 
some cases Avq is either unchanged or slightly de- 
creased. In general the calculated Aw seem to agree 
better with those measured with an unirradiated 
sample, though the difference is usually small. An 
analysis of the meaning of the changes in Avq upon 
irradiation was not attempted. Note that  radiation 
caused A00 to increase in the ( h l h 2 0 )  plane while it 
decreased in the (hl,h2,hl+h2) plane. However, the 
sum of A00 in the two planes is unchanged. This is 
consistent with the requirement that  the average 
short-range order intensity is a constant and indepen- 
dent of the state of order. The rather large discrepancy 
between observed and calculated A00 in both planes is 
almost surely due to residual temperature diffuse 
scattering which the extrapolation failed to rembve 
from the measurements. I t  should have little effect on 
other A vq. 

No effect of thermal motion on the sharpness of the 
diffuse scattering distribution was observed. This 
effect, originally proposed by Muldawer (1952) and 
more recently treated by Walker & Keating (1961) 
requires that  as the temperature is raised the short- 
range order peaks become broader. Complications 
associated with this effect were intentionally avoided 
by making measurements as near to the origin in 
reciprocal space as possible, and by making all 
measurements at room temperature or below. 

Very little if any of the intense diffuse scattering 
near the fundamental Bragg maxima for disordered 
alloys predicted by Huang (1947) and found by Borie 
(1957) for Cu3Au was observed. In fact, after the 
extrapolation to eliminate the temperature diffuse 
scattering, the residual diffuse scattering near the 
Bragg maxima was quite flat and very weak. In view 
of the unusual character of the atomic displacements in 
this case, it is perhaps not surprising that  the predic- 
tions of Huang's elastic model do not hold. 

Though the model used here for comparison with 
experiment presumed that all of the aluminum atoms 
occur in sets of four to form tetrahedra, the quality of 
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the  agreement  with exper iment  is not  so good t h a t  i t  
precludes the possibili ty of occasional incomplete 
t e t r ahedra  or occasional isolated a luminum atoms. I t  
would be of considerable interest  to s tudy  more dilute 
alloys to see whether  the  t e t rahedra l  a r rangement  
found here persists even when the concentrat ion is so 
low t h a t  each a luminum a tom has the chance to isolate 
itself completely from like second and th i rd  neares t  
neighbors. I t  is clear t h a t  the  exper imenta l  techniques 
for measurements  of the sort described here are now 
sufficiently refined t h a t  meaningful  results for alloys 
considerably more dilute m a y  be obtained.  

The authors  wish to t hank  M. S. Wechs]er and R. H. 
Kernohan ,  who suggested the  problem, prepared the 
samples, and carried out the irradiat ion.  
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the Structure of L-Arginine Dihydrate 

BY ISABELLA L. KARL:B AND J. :KA~LE 

U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A. 

(Received 25 July 1963) 

The crystal structure of L-arginine dihydrate was determined directly by means of the symbolic 
addition phase determination procedure, using the complete three-dimensional data obtained from 
Cu radiation. The space group is P212~21 and the cell dimensions are: 

a--5.68, b=11.87, and c = 1 5 . 7 4 A .  

The arginine molecule is a zwitterion with the guanidyl group, rather than the amino group, 
accepting an extra proton. Two planes characterize the arginine molecule, one through the acid 
group, and the other through the extended side chain which contains the guanidyl group. The 
dihedral angle between these planes is 74 °. The arginine molecules and the water molecules each make 
infinite chains perpendicular to each other by hydrogen bonding. All 18 hydrogen atoms have been 
located. 

Introduct ion 

L-Arginine, +(HeN)2CNH(CH2)sCH(NH2)COO-, is one 
of the amino acids essential for animal  growth.  I t  is 
also the most  basic of the amino acids since, in addi t ion 
to the  a-amino group, i t  also contains a te rminal  
guanidyl  group. This invest igat ion afforded a good 
oppor tun i ty  to s tudy  a biologically impor tan t  amino 
acid s t ructure  and  its associated hydrogen bonding. 
I t  also provided a valuable  experience in the first  ap- 

plication of the  symbolic addi t ion me thod  for phase 
de terminat ion  (Karle & Karle ,  to be published) to a 
non-cent rosymmetr ic  crystal .  

E x p e r i m e n t a l  

Purif ied L-arginine was obtained from the Central  
Research Laborator ies  of General Mills, Inc.  Re- 
crystal l ization from water  a t  room tempera tu re  yielded 
crystals  of the d ihydra te  which were colorless, t ranspa-  


